Four-dimensional locally homogeneous pseudo-Riemannian manifolds with an isotropic Weyl tensor

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature Homogeneous Pseudo-riemannian Manifolds Which Are Not Locally Homogeneous

We construct a family of balanced signature pseudo-Riemannian manifolds, which arise as hypersurfaces in flat space, that are curvature homogeneous, that are modeled on a symmetric space, and that are not locally homogeneous.

متن کامل

Flat Homogeneous Pseudo-Riemannian Manifolds

The complete homogeneous pseudo-Riemannian manifolds of constant non-zero curvature were classified up to isometry in 1961 [1]. In the same year, a structure theory [2] was developed for complete fiat homogeneous pseudo-Riemannian manifolds. Here that structure theory is sharpened to a classification. This completes the classification of complete homogeneous pseudo-Riemannian manifolds of arbit...

متن کامل

Complete k-Curvature Homogeneous Pseudo-Riemannian Manifolds

For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Isoclinic Spheres and Flat Homogeneous Pseudo - Riemannian Manifolds

The structure theory ([3], [8]) for complete flat homogeneous pseudo-riemannian manifolds reduces the classification to the solution of some systems of quadratic equations. There is no general theory for that, but new solutions are found here by essentially the same construction as that used for isoclinic spheres in Grassmann manifolds [4]. It is interesting to speculate on a possible direct ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

سال: 2019

ISSN: 0021-3446,2076-4626

DOI: 10.26907/0021-3446-2019-7-86-90